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Motion of a rigid particle in a rotating viscous 
flow: an integral equation approach 
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(Received 29 October 1993 and in revised form 29 March 1994) 

A boundary integral method is presented for analysing particle motion in a rotating 
fluid for flows where the Taylor number F is arbitrary and the Reynolds number is 
small. The method determines the surface traction and drag on a particle, and also 
the velocity field at any location in the fluid. 

Numerical results show that the dimensionless drag on a spherical particle trans- 
lating along the rotation axis of an unbounded fluid is determined by the empirical 
formula D / 6 n  = 1 + (4/7) F1/* + (8/9n) F, which incorporates known results for the 
low and high Taylor number limits. Streamline portraits show that a critical Taylor 
number Fc NN 50 exists at which the character of the flow changes. For F < Fc the 
flow field appears as a perturbation of a Stokes flow with a superimposed swirling 
motion. For F > Fc the flow field develops two detached recirculating regions of 
trapped fluid located fore and aft of the particle. The recirculating regions grow 
in size and move farther from the particle with increasing Taylor number. This 
recirculation functions to deflect fluid away from the translating particle, thereby 
generating a columnar flow structure. The flow between the recirculating regions and 
the particle has a plug-like velocity profile, moving slightly slower than the particle 
and undergoing a uniform swirling motion. The flow in this region is matched to the 
particle velocity in a thin Ekman layer adjacent to the particle surface. 

A further study examines the translation of spheroidal particles. For large Taylor 
numbers, the drag is determined by the equatorial radius; details of the body shape 
are less important. 

1. Introduction 
This paper presents an integral equation solution for analysing particle motion 

through fluids undergoing solid-body rotation. The approach accounts for Cori- 
olis and centrifugal forces, but neglects the local and convective accelerations as 
measured in a rotating frame. The mathematical framework extends the boundary 
integral method for Stokes flows to the class of linearized, rotating viscous flows. 
To demonstrate the method, we determine the drag and the velocity field generated 
by an isolated axisymmetric particle translating parallel to the rotation axis in an 
unbounded fluid. 

Particle motion in a rotating fluid may be characterized by the Taylor number F 
and Reynolds number ge defined as 
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Y Shape Method Reference 

0 
4 I+  
$ 1  
$ 1  
$ 1  
$ 1  

arbitrary 
arbitrary 

< I  

sphere 
sphere 

ellipsoid 
disc/sphere 
disc/sphere 
bubble/ drop 

sphere 
disc 

sphere 

exact solution 
matched asymptotic expansion 
unsteady, inviscid analysis 
boundary-layer analysis 
boundary-layer analysis 
boundary-layer analysis 
Inultipole expansion 
dual integral equations 
numerical : finite difference, 

series expansion (9, < 1) 

Stokes 
Childress (1964) 
Stewartson (1952) 
Morrison & Morgan (1956) 
Moore & Saffman (1969) 
Bush et.  al. (1993) 
Weisenborn (1985) 
Vedensky & Ungarish (1994) 
Dennis et.  al. (1982) 

TABLE 1. An overview of theoretical work related to slow particle motion (9, 4 1) along the rotation 
axis of an unbounded fluid in solid-body rotation. (Dennis et. al. 1982 included weak inertial effects 
so that 9, < 1.) t 9e/F-2 fixed. 

where a is a representative particle dimension, Up is the particle velocity, 0 is the solid- 
body rotation rate, and v is the kinematic viscosity. The Taylor number expresses the 
relative importance of the Coriolis to the viscous forces. Different non-dimensional 
parameters often appear in the rotating-fluids literature. For example, fluid motion 
is commonly characterized using the Rossby number Wo = Up/Oa  = F-' 8, and 
Ekman number Ek = v / 0 a 2  = Y-l. 

In the limit of small Reynolds number W, 4 1, the flow field resulting from a 
translating particle can be quite varied depending on the magnitude of the Taylor 
number (Greenspan 1968). For Y 4 1 viscous forces dominate Coriolis forces, and 
the motion is approximately a Stokes flow with a superimposed swirling motion. 
In the geostrophic limit for which F 9 1, fluid motion in the lateral plane is not 
coupled with motion parallel to the rotation axis - a theoretical result implied by 
the Taylor-Proudman theorem (e.g. Batchelor 1967). Experimental observations, 
first made by Taylor (1922, 1923), show that a slowly translating particle in a 
rapidly rotating fluid is accompanied by a fluid column which extends parallel to 
the rotation axis. These Taylor columns form when the convective acceleration is 
small. Pritchard (1969) investigated particle motion parallel to the rotation axis and 
demonstrated that a Taylor column forms in an unbounded fluid when the Rossby 
number go = 9,F-l < 0.7. 

Table 1 summarizes theoretical and numerical studies related to particle motion 
along the rotation axis of an unbounded fluid, for flows with small convective inertial 
influences. The research primarily focuses on determining the drag on the particle as 
a function of the Taylor number. The low- and high-Taylor-number asymptotic limits 
for the particle drag were first deduced by Childress (1964) and Stewartson (1952), 
respectively. Weisenborn (1985) used the 'method of induced forces' to determine the 
drag on a rigid sphere for arbitrary Taylor number and confirmed the Childress and 
Stewartson asymptotic results. Dennis, Ingham & Singh (1982) numerically calculated 
the drag on a rigid sphere for small but finite Taylor and Reynolds numbers. 

Until recently, only limited details of the flow field accompanying axial particle 
motion were available. Moore & Saffman (1969), in a detailed study of the high- 
Taylor-number limit, developed scaling arguments for the velocity variations within 
the Ekman and Stewartson layers as well as throughout the Taylor column. Recently 
Vedensky & Ungarish (1994) used dual integral expressions to analyse the motion of 
a translating infinitely thin disc for arbitrary Taylor numbers. They determined the 
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flow field everywhere in the fluid and demonstrated that the Taylor column terminates 
with two large recirculating regions of ‘trapped fluid’ which are detached from the 
particle surface. 

Maxworthy (1965, 1968, 1970) performed experimental investigations in the pa- 
rameter regime relevant to our study. His results for the particle drag as a function of 
Taylor number are compared with our numerical simulations in figure 5. The results 
show good agreement at low Taylor number. There remains a small discrepancy at 
high Taylor numbers, as previous authors have reported. Maxworthy also described 
features of the flow field which are in qualitative agreement with the numerical results 
presented in this paper, as well as by Vedensky & Ungarish. 

Two topics which are outside the scope of this paper, but related to slow particle 
motion through rotating fluids, are worthy of mention. Particle translation perpen- 
dicular to the rotation axis has been studied experimentally and theoretically; a 
good introduction is provided by Herron, Davis & Bretherton (1975). Axial particle 
motion in bounded systems at high Taylor numbers has been investigated by Moore 
& Saffman (1968, 1969) and Hocking, Moore & Walton (1979) for rigid particles and 
Bush, Stone & Bloxham (1993) for drops. 

Particle motion parallel to the rotation axis is relevant to the modelling of the 
centrifugal separation of two-phase flows. The assumption of motion parallel to 
the rotation axis is not unduly restrictive, since centrifugal forces drive a lighter 
phase inward toward the rotation axis, while buoyancy forces cause a vertical motion 
parallel to the rotation axis. Often the drag on the suspended particles is assumed to 
be Stokes drag (Hsu 1981), which corresponds to the limit F = 0. In fact, the actual 
drag may be much larger owing to the dynamical effects of rotation (see figure 5) .  
For example, a rigid sphere translating along the axis of a rotating fluid experiences 
a drag that is approximately four times the Stokes drag for F = 5 and ten times the 
Stokes drag for F = 20. Similar effects may be expected for particles moving through 
strong swirling or vortical flows. 

A Taylor-column flow structure extends the hydrodynamic influence of a particle 
to larger distances than that of a particle moving through a non-rotating fluid. This 
long-range influence may have a profound effect on the rheology of suspension flows 
in rotating fluids, even those of a dilute nature (Ungarish 1993). For example, a 
1 mm radius particle suspended in water inside a high-speed centrifuge rotating at 
20000 RPM generates a Taylor column extending more than 10 cm. The same particle 
in the Stokes flow limit disturbs the fluid to the same degree at distances of about 
1 cm. 

In this paper we introduce a theoretical and numerical framework for studying 
particle motion in rotating fluids. The formalism is applicable to multiple particle 
systems and drops. The governing equations and the integral equation solution are 
given in $ 2. The solution is specialized to axisymmetric problems and on-axis motions 
in $3.  Section 4 studies the drag and flow field for translating spheres and prolate 
ellipsoids. Comparisons with existing analyses and experimental results are reported 
and discussed. 

2. Integral equation representation 
Consider the motion of a rigid particle in a fluid of density p and kinematic 

viscosity v that is in solid-body rotation with angular velocity 52. Let a represent 
a typical dimension of the particle which translates with velocity U p  and rotates 
relative to the fluid with angular velocity 8,. The equations of motion can be non- 
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dimensionalized using U,, = )U,I,n,u/U,,  and pU,/a as the characteristic scales for 
velocity, length, time and pressure, respectively. In this case, the governing equations 
for the dimensionless velocity and pressure fields, written relative to axes rotating 
with steady angular velocity $2, are 

& ( $ + u.Vu ) + 2F52 A u = -Vp + V2u = V.T and V . u  = 0, (2.1) 

where p denotes the dimensionless reduced pressure, which incorporates the centrifugal 
acceleration and gravitational body force, and the stress tensor is T = -p l+  (Vu + 
Vu'). The Reynolds and Taylor numbers are two dimensionless parameters which 
characterize particle motion in rotating fluids and are defined in (1.1). 

Boundary conditions for the motion of the particle are 

u(x)  = U p  + 52, A (x - x,) (2.2) 
u(x )  --+ 0 for Ix - x,I --+ 00, (2.3) 

where x is the position vector, x, locates the particle centre of mass, and S, denotes 
the particle surface. 

for x E S,, 

2.1. Integral equation solutions to the linearized equations 
For sufficiently small particle Reynolds number Be Q 1, the quasi-steady linear equa- 
tions governing particle motion in a rotating viscous flow are 

2F52 A u = -Vp + V2u and V.u  = 0. (2.4) 

The three terms in the momentum equation represent a balance between the pressure 
gradient, Coriolis and viscous forces. The limit F Q 1 gives Stokes flow, while the 
limit F B 1 yields the geostrophic equation 2 F D  A u = -Vp. This latter limit gives 
rise to the Taylor-Proudman theorem Q.Vu = 0 (obtained by taking the curl of 
the geostrophic equation), which constrains axial variations of velocity and explains 
the formation of Taylor columns accompanying translating particles (e.g. Greenspan 
1968). 

The equations of motion (2.4) can be recast as an integral equation relating the fluid 
velocity to the velocity and traction on the surface(s) S bounding the fluid domain 
V .  The boundary integral equation is derived in Appendix A and has the form 

5 E V ;  4 5 )  
5 E S ;  $u(<)  } = -1 [ n . T ( x ) . G ( x l c ; F )  - u ( x ) n ( x ) : H ( x l < ; F ) ]  dS,, (2.5) 
< $ V ;  0 

where n is the unit normal directed into I/, < is a field point, and x denotes the 
integration variable as shown in figure 1. The kernels G and H describe the velocity 
and stress fields at x resulting from a point force 2 at and are defined as 

&(x) = G(x l< ;9 ) .2  and ?(x) = H ( x I < ; F ) + .  (2.6) 

The Green's functions, or fundamental solutions, G and H satisfy the point-forced 
adjoint system of equations to (2.4) : 

-29-52 A 2 = -V$ + v22 + 2 6(x - 5 )  and V.& = 0. (2.7) 

The sign change on the Coriolis term in equation (2.7) eliminates volume integrals 
which would otherwise appear in the development of the integral equation (2.5). 

This formulation is similar to the well-studied Stokes flow problem (e.g. Youngren 
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FIGURE 1. An arbitrary particle which is translating and rotating through a fluid in solid-body 
rotation with angular velocity Q. 

& Acrivos 1975; Kim & Karrila 1991; Pozrikidis 1992). The principal difference 
consists of the more complicated expressions for the rotating Green’s functions G and 
H. These functions, which are valid for arbitrary Taylor number, are obtained by a 
Fourier transform of (2.7). For exampie, 

where E is the third-rank permutation tensor and A EE (k.k)3 + 4F2(k.S2)2. A similar 
expression may be derived for H(x15; F). Unfortunately, only two of the three inverse 
Fourier transformations can be deduced analytically; the remaining integration must 
be evaluated numerically (see 5 3.2). 

The functions G and H have the following properties. Setting F = 0, the Green’s 
function reduces to the Stokeslet solution 

w i t h r = x - < .  

Interchanging source and receiver leads to the reciprocal property Gij (x l<;  F)  = 
G j i ( < l x ; - F ) ,  which is demonstrated in Appendix A. Symmetry of the stress tensor 
requires Hijk = Hjik. 

In the remainder of this paper we apply the boundary integral expression (2.5) 
to study the motion of a rigid particle translating along the rotation axis in an 
unbounded fluid. 

2.2. Motion of a rigid particle 
Applying the boundary conditions (2.2), (2.3) to the integral equation (2.5) yields 
a relationship between the velocity and surface traction on all bounding surfaces. 
Owing to the eventual viscous decay of the velocity field, the integral over the surface 
at infinity makes a vanishingly small contribution to (2.5). (In Appendix C we show 
that the velocity field within a conical region centred on the rotation axis decays 
as (u,v, w )  = O ( r / z * ,  (2F)’/3 r / z4 l3 ,  l /z) .  Outside of this conical region, numerical 
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evidence shows that the field decays at a faster rate.) The domain of the integral 
equation reduces to only the particle surface S, and results in 

5 E v ;  4 5 )  
5 E sp; 
5 g v ;  0 

} - ip [up + 0, A (x - xc)] n(x):H(xl<;F) d& 

(2.9) 

I 
T [up + 0, A (5  - xc)] 

= - ip n.T(x).G(xl<; F) dS,. 

The dependence on the third rank tensor H may be eliminated by using the divergence 
theorem along with the identity V.H = -2F0 A G - 6(x - <)I, which follows from 
(2.6) and (2.7). We thus obtain 

(2.10) 

Here V, denotes the particle volume. The net force and torque exerted by the fluid 
on the particle are given by 

(X - x,) A ~ . T ( x )  dS,. (2.11) 
LH =ip F H  = 1, n.T(x)  dS, and 

The integral expressions (2.9) or (2. lo), subject to the possible constraints imposed 
by the net force and/or torque (2.ll), form the starting point for the numerical study 
of low-Reynolds-number rigid particle motions in rotating fluids. The problem may 
be stated in a number of ways: (i) given the particle translational velocity U p  and 
rotational velocity a,, determine the surface traction n.T and hence the force F H  and 
torque LH causing the motion; (ii) given the translational velocity of a torque-free 
particle, determine the surface traction and rotational velocity; (iii) given the net force 
and torque, determine the velocity and rotation rate. 

For any of the problems mentioned above, the integral expression (2.9) or (2.10) for 
5 E S,, together with the auxiliary conditions on net force and torque (Zll), specify 
a well-posed boundary-value problem. The velocity field at any point in the fluid 
domain ( 5  E V )  may be calculated from (2.9) or (2.10) once the surface traction and 
velocity have been determined. 

In this paper we assume that the particle does not rotate (a, = 0) and translates 
with prescribed velocity U p  in a direction parallel to the rotation axis ( U p  A $2 = 0). 
The volume integral in (2.10) thus vanishes and the integral equation simplifies to 

(2.12) 

By restricting 5 E S,, equation (2.12) is an integral equation of the first kind to be 
solved for the unknown surface traction n- T. 

The assumption of translation without rotation is not unduly restrictive. A torque- 
free, axisymmetric, fore-aft symmetric particle, translating along the rotation axis of 
an unbounded fluid, does not rotate relative to the fluid, although oppositely directed 
swirl velocities are generated fore and aft of the particle. This motion is a consequence 
of the symmetry of the governing linear equations. Breaking fore-aft symmetry, by 
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r 

FIGURE 2. (a)  Axisymmetric particle translating along the rotation axis. ( b )  Ring of point forces 
passing through { with the field point at x. 

either altering the particle geometry or by including boundaries, will cause the particle 
to undergo relative rotation. In a future study, we will use the representation (2.9) or 
(2.10) to examine such problems. The next section considers simplifications associated 
with axial symmetry. 

3. Axisymmetric Green’s function 
The integral equation (2.12) relating the surface velocity and tractions is unwieldy 

to solve because five integral evaluations are required: two over the physical space 
variables describing the particle surface and three over the Fourier space variables 
defining the Green’s function. However, for axially symmetric flows, three integrations 
may be performed analytically, thereby rendering a significant simplification. 

Using cylindrical coordinates (r, 4, z )  with position vectors x = (r, z ) ,  5 = (q, 5 )  as 
shown in figure 2a, and denoting the axisymmetric velocity field u = (u,u, w),  the 
integral equation (2.12) describing translation of an axisymmetric rigid particle along 
the rotation axis may be written 

u(5)  = - J  2nrF.M(xJc;F) ds,, (3.1) 

where the arclength s is the trace of the particle boundary in the ( r , z )  plane and 
F = (F,., Fb, F,) is the local surface traction vector expressed in cylindrical coordinates. 
The details of this simplification are presented in Ss3.1 and 3.2, but a few introductory 
remarks are helpful. 

The second-rank tensor M(xl<; F)  is the axisymmetric analogue of the Green’s 
function G and involves a single integral evaluation (see (3.22)). M describes the 
(axisymmetric) adjoint velocity ii at field point x, which arises from an axisymmetric 
ring force 2 = ( 8 , , 8 ~ , 8 , )  passing through 5,  as illustrated in figure 2b: 

ii(xj = M(x15; F)4(<). (3.2) 
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Owing to the sign change on the Coriolis term in the adjoint equation, care must 
be exercised in drawing a physical interpretation, since the direction of certain 
components of ii may be opposite from that expected from a given forcing. 

For later use, we define the components in M using the notation 

Mrr Mr+ Mrz 
M(x15;F) = M#r M#@ M& ] t x 1 5 ; n  [ Mzr Mz+ Mz, 

(3.3) 

The next three subsections provide details of the axisymmetric formulation. Section 
3.1 presents two methods for eliminating the azimuthal dependence and so establishes 
the axisymmetric Green’s function M. The first method directly determines M from 
the axisymmetric form of the governing equations. Setting F = 0, we arrive at a novel 
way of determining the axisymmetric Stokes flow Green’s function and associated 
pressure field. The second method employs techniques from the Stokes flow literature 
(e.g. Pozrikidis 1992) whereby the original integral expression is integrated along 
the azimuthal direction. Both methods lead to identical integral representations of 
the Green’s function, which involves inverse transforms along the axial and radial 
directions. In $3.2 residue theory is used to evaluate the axial integration, thereby 
reducing the Green’s function to a single integration. Section 3.3 provides details of 
the numerical implementation and $3.4 concludes by examining the response to a 
point force located at the origin. 

3.1. Eliminate azimuthal dependence 

3.1.1. Impose axial symmetry on the governing equations 

The axisymmetric form of the integral equation (3.1) may be formally developed as 
outlined in Appendix A. Equation (3.1) utilizes the Green’s function M which satisfies 
the axisymmetric form of the adjoint equation subject to a ring of point forces. 

Defining the adjoint velocity to be h = (a, 6, a) and the axisymmetric components 
of the ring force through the point 5 to be 2 = ( B r , B + , B z ) ,  the governing equations 
(2.7) may be written 

i a  aa 
r dr a Z  

0 = - - ( rC)  + -, (3.7) 

where the three-dimensional delta function has been expressed as a ring forcing using 

These equations are solved by applying a Fourier transform in z, and a Hankel 
6(x - 5 )  = J(r - Y)  6(z - 0 /(2.JrY). 
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transform of order 1 to equations (3.4) and (3.5) and of order 0 to equations (3.6) 
and (3.7). The transform variables ( U ,  V ,  W ,  P) with wavenumber vectors ( k ,  n) are 
defined as 

and 

with the complementary inversion formulae 

and 

(3.9) 

(3.10) 

(3.11) 

The transforms (e.g. Sneddon 1972) reduce equations (3.4)-(3.7) to four algebraic 
expressions, which are straightforward to solve : 

e-in[ 

[ u, I/, W ,  P I t  = - 
2nA 

1 n2(k2 +n2) J1 (yk) -2T-n’ Jl(qk) -ink(n2+k2) Jo(qk) I 2Fn2 ~ l ( q k )  (k2+n2)’ Jl(qk) -i2Fnk Jo(qk) 

I ink(k2+n2) J l (qk)  -i2Fnk J1 ( q k )  

L-k(k2+n2)2 Jl(qk) 2Fk(k2+n2) Jl(qk) -in(4F2+(n2+k2)2) Jo(qk)  1 
(3.12) 

where 

A = (k2  + 4F2n2. (3.13) 

Explicitly writing the inverse transforms, the axisymmetric form of the Green’s 
function M may be expressed compactly in the form 

n2(k2 +n2)J1 (kr)Jl  ( k q )  -2Fn2J1 (kr)J1 (kq  ) -ink(k2 +n2)J1 (kr)Jo(kq)  

2Fn2Jl(kr)Jl(kq) (k2+n2)2J1(kr)Jl(kq) -i2FknJl(kr)Jo(kq) 

ink(k2+n2)Jo(kr)Jl(kq) -i2FnkJo(kr)Jl(kq) k2( k2 + n2)Jo (kr)Jo( ky ) 
(3.14) 

where the components of M correspond to equation (3.3). 
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Before proceeding with further details of the inverse transform, we explicitly demon- 
strate the relationship between the axisymmetric function M(x15; S) and the original 
Green's function G(xlC; F). 

3.1.2. Azimuthal integration of G 

An alternative method for deriving M is to integrate equation (2.5) along the 
azimuthal direction. This procedure is standard for axisymmetric Stokes flow problems 
(e.g. Pozrikidis 1992). We provide a few details since the intermediate steps are altered 
owing to the more complicated form of the governing equations for rotating viscous 
flow. 

We introduce a cylindrical coordinate system with position vectors 5 = (q ,  0, c )  
and x = (rcos4,rsin4,z),  and denote the area element as dS, = r d 4  ds, where s 
denotes a differential element of arclength along the surface. The surface traction 
is independent of the azimuthal coordinate, and is written relative to the Cartesian 
coordinate system as 

n . ~  = ( F ,  cos 4 - F+ sin 4 , ~ ~  sin $J + F+ cos 4 , ~ ~ )  . (3.15) 

The general boundary integral expression (2.5) may be rearranged to yield 

4 5 )  = 

1 G I I  cos 4 + G21 sin 4 
G21 cos 4 - G11 sin 4 

G12 cos 4 + G22 sin # 
G22 cos 4 - GI2 sin 4 

G13 cos 4 + G27 sin # 
G23 cos 4 - GI3 sin 4 

G32 (333 

(3.16) 

where the surface traction vector is F = (Fr,F$,F,) and the components of the 
Green's function G,, are given in equation (2.8) in terms of a Fourier inversion. 
Equation (3.16) involves five integrations: two over physical space variables and three 
over Fourier space variables. 

The Fourier inversion integral (2.8) may be simplified using cylindrical coordinates 
with the wavenumber vector defined as k = ( k  cos # ,  k sin #i, n), so that k - ( x  - <) = 

rkcos(4-4')-ykcos4'+n(z-LJ and dk = k d4' dk dn. The two angular integrations 
($,#) have closed-form solutions obtained using the identities 

[ cos (m+'> eItcosN d@ = 2d"J,(t) ,  (3.17) 

where J,(t) is the Bessel function of the first kind of order m (Morse & Feshbach 
1953), and 

. I F - [  [ G3, 

x r  d 4  ds, 

(3.18) 

which follows from (3.17) with a change of variables. Performing the two azimuthal 
integrations in (3.16) leads directly to the axisymmetric form of the integral equation 
(3.1) and the function M given in (3.14). 

3.2. The axial inverse transform 
The integral over the axial wavenumber n is evaluated using contour integration. 
Simple poles of the integrand of equation (3.14) occur where 

A = (n2 + k2)3 + 4 F 2 n 2  = (n2 + c2) (n2  - N 2 )  (n2 - $) = 0. (3.19) 
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The roots of this cubic equation for n2 are expressed in terms of 

c2 = k2 - (s1 + s2) and 2N2 = -(sl + s2 + 2k2) + i&sl - s2), (3.20) 

where c2 2 0 for all k, N2 represents the complex conjugate of N2, and 

The three roots are distinct for LT # 0. In the limit 5 = 0, the roots form a triple 
pole at n2 = -k2. 

For z - i 2 0 and F # 0, the contour integral is closed in the upper half-plane 
and the residue evaluated for simple poles n = ic,N and -m. For z - < < 0, the 
contour is closed in the lower half-plane with poles n = -ic,-Nand x. Performing 
the contour integration, the components of M are 

(3.22~) 

(3.22~) 

(3.224 

(3.22e) 

where Re specifies the real part, sgn takes the sign of the argument, and 

A1 = 2(c2 + N2)(c2 + F )  and A2 = 2(c2 + N2)(N2 - P). (3.23) 

No further analytical simplifications of these expressions are possible. 

3.3. Numerical implementation 
We begin with a few observations relevant to the numerical evaluation of (3.22) 
and solution of (3.1). The Stokes flow response (or Stokeslet) corresponds to setting 
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cF = 0, so that equation (3.14) reduces to 
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. (3.24) 1 H2Jl (kr )J ,  (krt)  0 -inkJl(kr)Jo(kq) 
0 (k2 + n2)J1(kr)J1@r) 0 

inkJo(kr)Jl ( k q )  0 k 2  Jo(kr)Jo(kr 1 

In Appendix B we show how to recover the common form of the Stokeslet which 
involves elliptic integrals. The components in (3.24) which are identically zero indicate 
that the swirling motion is decoupled from the axial and radial motions in the limit 
T = 0. This decoupling no longer holds when rotational effects are included. 
Axisymmetric flows at finite Taylor numbers have swirling motions caused by axial 
and radial surface forces, as well as axial and radial fluid motions caused by azimuthal 
surface forces. 

Although not obvious from the form of (3.22), the diagonal terms M,,, M44 and 
M,, are logarithmically singular as x -+ < (as in the Stokes flow limit). The other 
components of M are non-singular. From a numerical standpoint, it is convenient 
to remove the singularity, so that integrals are ‘well behaved’ in the vicinity of the 
singularity. In Appendix B we introduce the disturbance Green’s function defined 
by subtracting the singular Stokeslet M d  = M - MsroLes; then Md is non-singular 
everywhere. 

The explicit dependence on the Taylor number in the denominator of M may be 
eliminated by suitably rescaling lengths. In particular, the Green’s function satisfies 

M(r,z lq ,  (;9) = F 1 / 2 M ( T 1 ’ 2 r ,  F 1 ’ 2 z l , F ’ / 2 q ,  F1l2(; 1). (3.25) 

This rescaling has numerical advantages over the unscaled equation by keeping terms 
O(1) in the integrand of the Green’s function and has been used in the calculations 
reported here. The reciprocity relation Mij(r,  zlq, ( ; 5) = Mji(q,  [ l r ,  z ;  -9) can be 
demonstrated by direct substitution. This identity may be helpful for reducing the 
computation time in more complex problems, although we have not yet tried to 
implement this idea. 

We attempted various solution strategies for numerically evaluating the Green’s 
function (3.22) accurately and quickly. These strategies included: (i) direct integration 
of the Green’s function (3.22); (ii) removing the singular Stokeslet, integrating the 
disturbance function Md, and then adding the Stokeslet using its analytic represen- 
tation (see Appendix B for details) ; (iii) developing asymptotic expressions valid for 
F - 1 / 2 / z  - ( 1  % 1. Details of the asymptotic approximations appear in Appendix C. 

The IMSL routine DQDA.GI (adaptive Gauss quadrature for an infinite integration 
range) was used to perform the integrations with the error criteria typically chosen 
as ERRABS = ERRREL =: Convergence of the integrations was difficult for 
large values of the Taylor number (T > lo4) and/or large distances. 

Method (ii) was most efficient for solving the integral equation to obtain the surface 
tractions, and a combination of methods (i) and (iii) was best for determining velocity 
fields. Computations were performed using a Sun Sparc l+ workstation and the times 
required to calculate all of the Green’s function components at 60 ( r , z )  locations for 
a fixed ( q ,  () are summarized below. 

For ( r ,  z )  along a unit sphere and ( q ,  () = (,,h/2, @/2), chosen since it is represen- 
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tative of typical calculations involved in solving the integral equation : 
M m 115 s, Md& + MStOkeS 54 s. 

For ( r ,  z) along the line (0,O) - (3,30), with (y, 5) = (1,0), which simulates a typical 
calculation of the velocity field: 

Masym m 11 s. MdiSt + MStOkeS ~ 45 s, M m 27 s, 

In the far field, it is better to calculate the total Green's function or the asymptotic 
approximation. The asymptotic expressions had an absolute error less than when 

(Since the initial submission of this article, Lucas 1994 has developed more efficient 
F--1/212 - 51 > 10. 

and accurate quadrature schemes for evaluating M.) 

3.4. Response to a point force at the origin 
We conclude our discussion of the Green's function by considering the flow resulting 
from an axial point force of strength F located at the origin. Since there is no geometric 
lengthscale in this example, the equations of motion are non-dimensionalized using 
the Ekman length (v /Q) ' /~  and the characteristic velocity FL?1/2/(pv3/2). This scaling 
corresponds to setting F = 1 in the equations of motion. 

Figure 3(a) shows the streamlines projected onto the (r,z)-plane, and figure 3(b) 
shows contours of the induced swirling flow v / r .  The streamlines are closed, in 
contrast to the familiar streamlines for a Stokeslet. The Coriolis force induces 
oppositely directed swirls up- and downstream of the forcing, with fluid rotating 
slower than the bulk in front of the forcing, and faster than the bulk behind the 
forcing. 

Near the origin the flow in the (r,z)-plane qualitatively resembles that due to a 
Stokeslet; farther away, the flow is dominated by the rotational effects which create a 
weak return (down) flow (w < 0). From the numerical solution, the stagnation point 
u(r;,zg*) = 0 was found to be (1.7371 < r; < 1.7372,~; = 0) which is almost, but not 
quite, at a radial location fi. 

Rotational effects suppress radial motions and smooth out axial variations, pro- 
ducing an elongated or conical structure to the flow field. We illustrate this qualitative 
feature of the flow with the dotted line in figure 3, which is the locus of points where 
the axial component of the flow changes direction, i.e. w(r*,z ')  = 0. This structure 
scales as r/z1l3 = constant, a result suggested by the far-field asymptotic analysis 
developed in Appendix C. 

Finally, the velocity field far from the forcing z + 1 and located within a cone 
r / ~ ' / ~  4 1, may be shown analytically to decay like 

Numerical results have verified this dependence. 

(3.26) 

4. Numerical results for axial particle motion 
We present detailed numerical results for the translation of a rigid axisymmetric 

particle parallel to the rotation axis in an unbounded fluid. The surface stress 
distribution, total force acting on the particle, and the detailed velocity field are 
determined for a sphere ($4.1) and a family of prolate spheroids ($4.2) for 0 d 
F < lo4. Our drag calculations for a translating sphere agree with analytical results 
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FIGURE 3. Velocity field arising from a point force F& located at the origin: (a) streamlines projected 
onto the (r,z)-plane, ( b )  contours of the swirl angular velocity u/r. The dotted line in (a )  passes 
through w ( r * , z * )  = 0 and illustrates a flow structure scaling as r/z1I3 = constant. 

known in the high- and low-Taylor-number limits, and with the analytical results of 
Weisenborn (1985) which span all Taylor numbers. Additionally for F > 50, the 
velocity field shows a truncated Taylor column bounded by detached recirculating 
regions. Vedensky & Ungarish (1994) described a similar flow feature associated with 
the axial translation of a rigid disc. Section 4.2 investigates the translation of prolate 
spheroids and examines the effect that the particle shape has on the drag. 

We solve the integral equation of the first kind (3.1), using the method of Kan- 
torovich & Krylov (e.g. Youngren & Acrivos 1975) whereby the surface is subdivided 
into N equal sections and the unknown stress distribution F is assumed constant over 
a given section. The integral equation reduces to a set of 3N algebraic equations, 
which are solved using standard matrix methods to obtain the stress distribution. 
The symmetry of fore-aft axisymmetric particles allows the unknown tractions to be 
limited to the first quadrant of the particle surface. 

To demonstrate the convergence of the numerical method, we present typical results 
for the surface traction as the number of surface subdivisions is increased. Figure 4 
shows the calculated azimuthal stress component Fgi as a function of angular position 
0 (see figure 6) at F = 500 for three different subdivisions. Table 2 presents values of 
the surface traction for N == 15,31,51 at locations 8 = 0.37~ and 0.57~ (equator). The 
differences in the stress distributions between the N = 31 and N = 51 simulations 
are less than 1% for all 8. The calculations presented below typically used N = 51 
elements. 

We encountered numerical difficulties for F > lo4 due to excessive roundoff error 
in the Green's function calculation. We suspect this problem could be alleviated by 
rescaling the surface tractions to keep them O(1) as the Taylor number is increased, 
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FIGURE 4. Surface traction F+ on a rigid sphere (F = 500). These results demonstrate the 
convergence of the numerical solution as the number of elements N increases. The angular position 
0 is measured from the z axis (see figure 6). The difference in stress distribution between N = 31 
and N = 51 is less than 1% for all 0. 

N FJO = 0 . 3 ~ )  ~ ~ ( 0  = 0.37~) FJO = 0 .37~)  F,(e = 0.57~) 

15 291.38 17.52 230.40 52.66 
31 295.03 18.17 233.41 53.68 
51 296.23 18.36 234.41 53.91 

TABLE 2. Components of the surface traction for a translating sphere (Y = 500). The magnitude of 
the components are shown at two positions 6' = 0 . 3 ~  and 0 . 5 ~  (see figure 6) for increasing number 
of elements N = 15, 31, 51. 

by expressing the unknown surface tractions in terms of normal and tangential 
components, or by improving the numerical quadrature scheme used to calculate the 
Green's function. (In the period following acceptance of this article, Lucas 1994 
developed more accurate and efficient numerical quadrature routines which directly 
incorporate Bessel function kernels. These new routines have allowed us to extend 
the Green's function calculations to Taylor number F > lo4.) 

4.1. Rigid sphere 
This section presents results for a rigid sphere translating parallel to the rotation axis. 
A plot of the dimensionless drag D ( F )  = IFHI normalized relative to the dimensionless 
Stokes drag 67c is shown in figure 5. The figure includes the asymptotic approximations 
of Childress (D/67c = 1 + 4 F / 7  for F 4 1) and Stewartson (D/67c = 8F/97c for 
F 9 1). Weisenborn (1985) used a multipole method to obtain the drag for arbitrary 
Taylor number and reported the following improvement to the low-Taylor-number 
expansion : 
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Boundary, Integral and Weisenborn - 
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D 
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9 
FIGURE 5. Drag on a rigid sphere versus Taylor number determined using: (i) the boundary 
integral method described here and a multipole expansion (Weisenborn 1985) (solid line); (ii) 
experimental results of Maxworthy (1965, 1970) (symbols); (iii) matched asymptotic expansion for 
9 4 1 (Childress 1964) (heavy dashed line); (iv) inviscid geostrophic analysis for Y 5> 1 (Stewartson 
1952) (light dashed line). 

For large Taylor numbers, Weisenborn does not provide an explicit formula for 
the drag, but rather presents tabulated data. The comparison between the drag 
determined using the boundary integral method and Weisenborn’s results are within 
0.5% over the Taylor number range shown in the figure. Both results are represented 
by the solid curve in figure 5. 

A simple relationship for the drag as a function of Taylor number is given by the 
empirical formula 

which combines the low- and high-Taylor-number asymptotic limits. This formula is 
within 5% of the boundary integral and Weisenborn results for all Taylor numbers. 

Maxworthy’s experimental measurements (1965, 1970) are shown with symbols in 
figure 5. The results are in good agreement with the theoretical drag predictions for 
small Taylor number. Data for large Taylor number were obtained from the 1970 
paper (p. 464 § 3ii ) .  In our notation, Maxworthy’s empirical formula, representing 
data extrapolated to an unbounded system, is D/6n = 0.433 .T for the parameter 
range 117 < 9- < 445 and 0.005 < go < 0.1. However, as discussed by previous 
researchers, the theoretical predictions are approximately 25 YO less than the measured 
drag values for the high-Taylor-number experiments. The reason for the discrepancy 
remains unanswered. 

Figure 6 presents the components of the surface traction n.T = (Fp ,  F$, FQ), ex- 
pressed relative to a spherical coordinate system, for Taylor numbers 50 < 9 < 5000. 
Viscous stresses associated with the swirling motions induced by the rise of the par- 
ticle generate an azimuthal stress F4 on the particle surface; this stress vanishes in 
the Stokes flow limit. In the high-Taylor-number limit, thin Ekman boundary layers 
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FIGURE 6. Surface traction, expressed in spherical coordinates ( F p ,  Fb, Fo), as a function of Taylor 
number (9 = 50,500,5000): (a) geometry, (b)  F p / 9 ,  (c) Fb/S’/’ ,  ( d )  FQ/S-”’. The geostrophic 
pressure (Stewartson 1952) on the surface of a sphere is p = - ( 4 9 / ~ )  cos0 (using the scaling of 
this paper). 

develop with a nominal thickness F-1/2. Consequently, the governing equations 
suggest that the pressure increases as 5 and viscous stresses increase as F1/2. The 
pressure thus makes the largest contribution to the normal component of the stress, 
so that Fp should increase as F. In fact, over the Taylor-number range shown in 
figure 6 ,  the normal component of the traction is nearly identical with the geostrophic 
pressure distribution determined by Stewartson (1952). He found that for F + 1, the 
pressure distribution at the surface of a sphere is p = -(4F/x) cos 0, when expressed 
using the scalings of this paper. The azimuthal and meridional stress components are 
strictly viscous in character and scale as 51/2 in the high-Taylor-number limit. These 
scalings collapse the data as demonstrated in figure 6.  

The flow field is illustrated as a function of increasing Taylor number in figures 7 
and 8. Figure 7 shows streamlines plotted relative to a reference frame fixed to the 
particle and projected onto the (r,z)-plane. (The particle is fixed and a uniform flow 
approaches from large distances upstream. We have chosen this alternative frame 
of reference to illustrate the recirculating region.) Figure 8 presents contours of the 
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FIGURE 7. Streamlines shown relative to a reference frame attached to the particle and projected 
into the (r,z)-plane for ( a )  F = 1, ( b )  9 = 50, ( c )  9 = 100, ( d )  F = 500. Note that the axes 
are distorted and that a similar structure appears below the particle. For F > 50, a recirculating 
region appears and increases in size with increasing Taylor number. For 9 < 50, the flow appears 
qualitatively as a distorted Stokes flow. The swirling motion associated with this flow is shown in 
figure 8. 

swirl angular velocity u / r ;  where u / r  = constant, the fluid is locally undergoing a 
solid-body rotation. 

The streamline portraits illustrate that a critical Taylor number Fc m 50 exists 
at which qualitative changes to the flow field occur. The flow field for small Taylor 
numbers F < Fc is slightly distorted from that of a uniform Stokes flow (5 = 0) 
past a sphere with a superimposed swirling motion. The Coriolis force causes the 
swirl to change directions fore/aft of the particle. 

For large Taylor numbers F > Fc, a columnar flow structure suggestive of a 
viscous Taylor column or Taylor slug is established. The flow field develops detached 
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FIGURE 8. Contours of swirl angular velocity u / r  measured relative to the solid-body rotation rate 
for (a )  f = 1, ( b )  9- = 50, (c) 7 = 100, ( d )  F = 500. A similar structure, but with oppositely 
directed swirl, appears below the particle. The recirculating regions and geostrophic regions are in 
nearly solid-body rotation moving with O( 1) angular velocities. The narrow region of steepening 
contours corresponds to the Stewartson layer. 

recirculating regions fore and aft of the particle which grow in length and move 
farther from the particle as the Taylor number increases (figure 7c,d). The fluid 
remains confined within the recirculating regions and does not mix with the fluid 
whose streamlines approach from upstream. The magnitude of the recirculating 
velocities is approximately 10% of the imposed flow velocity. The recirculating 
region deflects fluid away from the centreline and redirects it along the sides of a 
cylinder which circumscribes the particle. The flow field between the recirculating 
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FIGURE 9. Regions in the flow field of a particle translating along the axis of a fluid in solid-body 
rotation when F > 50: Ekman layer, geostrophic region, recirculating region, far field, Stewartson 
layer. Flow in the region we refer to as 
‘geostrophic’ has attributes consistent with Moore & Saffman’s (1969) analysis, which coupled 
geostrophic interior/exterior flows via viscous boundary layers. Also indicated are the approximate 
axial positions of radial slices corresponding to figure 10. Note that the Ekman layer thickens as 
the equator is approached, which is not indicated in the figure. 

(The horizontal and vertical scales are distorted.) 

zone nnd the particle has a plug-like axial flow, nearly solid-body swirl velocity, and 
very weak radial velocity. These are features consistent with the interior geostrophic 
flow field described by Moore & Saffman (1969). The small flux of fluid entering 
this geostrophic region is drained by narrow Ekman layers adjacent to the particle 
surface. These flow features were also described by Vedensky & Ungarish (1994) for 
a rigid disc translating along the rotation axis. 

For finite Taylor numbers (Y # 0), oppositely directed swirl velocities are generated 
fore and aft of the particle (figure 8). The region in front of (behind) the translating 
particle has swirl velocities, measured in the labor3 tory frame, less (greater) than 
the bulk rotation rate. As the Taylor number increases, the swirl velocity contours 
elongate in the direction of the rotation axis and concentrate within a narrow band 
along the edge of the Taylor column (figure 8c,d) .  This narrow layer corresponds to 
the Stewartson layer. The velocity contours suggest that much of the Taylor column 
is in nearly solid-body rotation relative to the bulk fluid, and that the swirling motion 
decays rapidly to the solid-body rotation rate within a narrow layer forming the 
column boundary. 

The qualitative picture of the flow structure (Y > 50) is sketched in figure 9 which 
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identifies five distinct regions of the flow field and is modelled on the discussion given 
by Maxworthy (1970). Nearest the particle is a thin Ekman layer which matches 
the swirl velocity within the Taylor column to the particle velocity. This boundary 
layer transports fluid from within the Taylor column around the particle by means 
of Ekman pumping. The Taylor column consists of two domains which extend 
along the rotation axis. (i) A nearly geostrophic region where the fluid motion 
conforms approximately to the constraints of the Taylor-Proudman theorem - an 
O( 1) nearly uniform rotational motion, a weak plug-like axial flow, and a very weak 
radial flow. We refer to this region as geostrophic since our numerical results are 
in good agreement with Moore & Saffman’s (1969) analysis based upon geostrophic 
interior/exterior regions coupled via Stewartson boundary layers. (ii) A recirculating 
flow region which bounds the Taylor column and deflects flow around the particle. 
Clearly the Taylor column is not ‘stagnant’, as it has been occasionally characterized 
in the literature. Finally, the fur jield is matched to the interior flow through a shear 
transition or Stewartson layer. 

Figure 10 shows velocity components as a function of radial position at various 
axial positions indicated in figure 9 (F = 500). The velocity profile at z = 10 passes 
through the recirculating region, at z = 2 passes through the geostrophic region, and 
at z = 0 passes through the particle ( r  < 1). The Stewartson layer, which appears 
in all velocity profiles as the region with large radial gradients, is centred near r = 1 
and slowly broadens with increasing z .  

In figure 10 we observe that the axial and swirl velocities are O( 1) throughout most 
of the Taylor column region; the radial velocities are much weaker with magnitude 
O(10-2). Similar velocity magnitudes are observed over the entire range of Taylor 
numbers (F > Fc) and are consistent with the analytical estimates for the unbounded 
geometry developed by Moore & Saffman (1969, equation (8.14)). The qualitative 
features of these velocity fields are consistent with Maxworthy’s (1970, figure 7) 
experimental results. (In a bounded geometry where the Taylor column spans the 
entire fluid depth, the swirl velocities increase as F1’2 in the high-Taylor-number limit 
owing to vortex stretching and compression that occurs near the lower and upper 
boundaries, respectively.) 

Figure 10 demonstrates that fluid within the geostrophic region (z = 2) moves 
with the axial velocity of the particle and undergoes a nearly solid-body rotation with 
angular velocity Iu/rl = 0.6 for F = 500. The recirculating region ( z  = 10) also moves 
with a nearly solid-body rotation, but with an angular velocity Iv/rl = 1.0. Within 
the Stewartson layer, the axial velocity exceeds the far-field velocity by a factor of 
more than two in the region adjacent to the particle. This increased velocity within 
a relatively narrow region sustains the volume flux generated as fluid is deflected 
around the core of the Taylor column. The radial extent of the Stewartson layer 
slowly broadens and the maximum axial velocity decreases with increasing z.  All the 
velocity components exhibit large gradients along the radial direction. 

The sizes of the different flow regions indicated in figure 9 depend on the magnitude 
of the Taylor number. Maxworthy’s (1968) measurements showed that the Taylor 
column length, defined as the largest distance from the sphere at which the velocity 
on the axis is equal to the speed of the body, increases as F/17. We can estimate 
the length of the Taylor column, as well as the boundaries of other flow regions, 
by examining the centreline velocity w(r = 0,z). Figure l l(a) shows the centreline 
velocity w(r = 0,z) as a function of axial distance measured from the particle surface 
and scaled by the Taylor number as ( z  - l)/F. This scaling clearly identifies the 
geostrophic and recirculating regions. Figure 1 l(b) plots the centreline velocity versus 
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FIGURE 10. For caption see facing page. 
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axial distance scaled by the thickness of the Ekman layer ( z  - l)/F-’/’. It is in this 
layer that the velocity in the geostrophic region is matched to the speed and rotation 
rate of the particle. The relative thicknesses of the Ekman layer, geostrophic and 
recirculating regions are shown in figure 12 as a function of Taylor number. 

Using the centreline velocity, we may define the thickness of the Ekman layer 
adjacent to the particle as the distance where the axial velocity achieves its first 
minimum (see figure llb). We find that the Ekman layer thins as 2.5F-’l2 with 
increasing Taylor number. Adjacent to the Ekman layer is the geostrophic region 
in which the centreline velocity is nearly constant over a distance scaling as 0.006F. 
This region is a manifestation of the Taylor-Proudman constraint eliminating velocity 
variations in the axial direction. The magnitude of the axial velocity is only slightly 
less than the particle rise speed (w = 0.98 when F = 500). This suggests that there 
is only a minimal flux into the region and that the Ekman suction which drains the 
region is weak. At a still larger axial distance is the recirculating region in which 
the centreline velocity exceeds the particle speed. The recirculating region forms 
the boundary of the Taylor column, which has a length measured from the particle 
surface increasing as 0.052F. This result agrees with the experiments of Maxworthy 
(1970) and the analysis of Vedensky & Ungarish. Beyond the recirculating zone is the 
far field in which the velocities viscously decay as w(r = 0 , z )  w F / z .  

4.2. Drag on a translating ellipsoid 

We examine the effect of particle shape by studying the drag on a family of prolate 
ellipsoids. The surface is defined using (r, z )  = (sin 8, z,,, cos 0) for 8 = (0, x) so that 
lengths and the Taylor number are scaled by the equatorial radius. The aspect ratio 
(length/breadth) corresponds to the half-length of the particle along the rotation axis 

Figure 13 illustrates the calculated drag as a function of Taylor number for aspect 
ratio 1 < z,,, d 8 and includes the drag on a thin disc determined in the analysis 
of Vedensky & Ungarish (1994). The drag is normalized to that of a unit sphere 
in a Stokes flow (F = 0). The stability of the prolate shapes to small changes in 
orientation has not been studied. 

In figure 13 we see that for a given shape the drag is a monotonically increasing 
function of Taylor number. At a fixed Taylor number, the increased drag with 
increasing aspect ratio is a consequence of the larger surface area of the particle. In 
the high-Taylor-number limit, the results for different aspect ratios all asymptote to 
the value 8F,/9n. This results illustrates that the drag only depends on the cross- 
sectional area of the particle, a result noted by Moore & Saffman (1968). The flow 

Zmax. 

FIGURE 10. Velocity profiles of the (a) axial w ,  ( b )  angular swirl u / r ,  ( c )  radial u components plotted 
along radial slices at axial distances z = 0,2,5,10 for F = 500. The slice through z = 0 shows 
a large axial velocity in the Stewartson layer adjacent to the particle. (When z = 0, the particle 
extends to r < 1 and the velocities u = u / r  = 0 based on symmetry.) The slice at z = 2 through the 
geostrophic region shows the velocity is plug-like with a nearly solid-body swirl ( r  < OS), while the 
section at z = 10 shows the recirculating region. Within Stewartson layers (centred at r = 1 and 
forming the sides of the Taylor column) the axial and radial velocities are a maximum and all the 
velocity components exhibit large gradients along the radial direction. Moore & Saffman’s (1969, 
equation 8.14) high-Taylor-number prediction is shown by the solid curve. Their result is valid in 
regions outside the Stewartson layers and assumes that there is no Ekman pumping on the particle 
surface. 
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FIGURE 11. (a )  Axial velocity W ( I  = 0,z )  along the centreline measured from the particle surface 
( z  - 1); (b) enlarged view near the particle surface showing the Ekman layer. (Note different scales 
in the two figures.) Figure (a) shows the geostrophic region in which the axial velocity is w = 0.98 
the recirculating region where w > 1, and the far field where the axial velocity decays as w = Y/z .  
Figure ( b )  shows the Ekman layer which matches the flow in the geostrophic region to the particle 
speed. 

fields for the translating ellipsoids have the qualitative features discussed in $4.1 and 
summarized in figure 9. 

Finally, a simple formula for the drag as a function of Taylor number, suggested 
by Vedensky & Ungarish (1994) for low Taylor number, is obtained by combining 
the low- and high-Taylor-number asymptotic results to yield 

(4.3) 

where D is the dimensionless drag and D, is the dimensionless Stokes drag on the 
ellipsoidal shape. For aspect ratios less than 4, this simple formula is in excellent 
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FIGURE 12. Distance from the particle surface ( z  - l), measured along the centreline, of the 
boundaries between different regions of the flow. For sufficiently large Taylor number, the height of 
the Ekman layer scales as 2.5Y-'I2, the geostrophic region as 0.006F and the recirculating region 
as 0.052F. Data points are based on the centreline velocity as described in the text. 
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FIGURE 13. Drag on spheroidal particles and on a thin disc (from Vedensky & Ungarish 1994). 
The particle half-length (aspect ratio) is denoted z,,,, and the lengths are scaled by the equatorial 
radius. For F + 1 the drag does not depend on the particle shape. 

agreement with the numerical results for all Taylor numbers. For larger aspect ratios, 
the approximation works well for both high and low Taylor numbers, but is less 
accurate for moderate values of the Taylor number. 
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Appendix A. Reciprocal theorem and related identities 
We derive a reciprocal theorem for the linearized equations governing rotating 

viscous flow leading to an integral equation representation for the velocity field. Also 
we establish a reciprocal relation for the Green's function. 

Consider two solenoidal vector fields defined within a volume V ,  bounded by 
surface S. Let (u, T = -p /  + (Vu + Vu'),f} satisfy the physical system of equations 

(A 1) 2.FQ A u = -Vp + V2u + f  = V.T+ f and V.u = 0. 

Similarly let {G, ? = -81 + (Vii + Viit),f} satisfy the adjoint equations 

- 2 s n A ; = - V ~ + V 2 ; + j = V . ? + 3  and V . i = O .  (A 2) 
Subtracting the inner product of u with (A 2) from the inner product of G with (A l), 
and using the vector identity ($2 A u).G = -(a A G).u gives 

0 = V. (T.2) - V.(  ?*u) + f.2 - f . ~ ,  (A 3) 

where the sign change preceding .F in the adjoint equation eliminates the cross- 
product terms. Integrating (A 3) over the fluid volume V and applying the divergence 
theorem with normal n directed into V yields the reciprocal identity 

which is analogous to the reciprocal theorem for Stokes equations. 

General case: To develop an integral equation, identify G with the flow due to a point 
force located at < by choosing 3 = 2 6(x - 5 )  where 2 is a constant vector. The 
fundamental solution of (A 2) is represented by 

G(x) = G(xJ<;F )2  and ?(x) = H ( x l < ; Y ) . & .  (A 5) 
Substituting equations (A 5) into (A4) and eliminating the arbitrary forcing 2 yields 

5 E v : 4 5 )  

g g v :  0 
5 E s : ;a<) } = 1 f G ( x l 5 ; n  dl/, 

[ n.T.G(xl<;.F-)  - u ~ z : H ( x ~ < ; F ) ]  dS,, (A6) -1 
provided the surface has L,yapunov smoothness. Setting f = 0 we obtain equation 
(2.5). 

Axisyrnmetric case: We can use the axial symmetry at the outset to directly develop 
an axisymmetric integral equation representation. We choose a cylindrical coordinate 
system and assume that the velocity and stress fields do not depend on the azimuthal 
coordinate 4. Define the components of the surface traction vector n.T  expressed with 
respect to the cylindrical base vectors ( r ,  4 , z )  as F = (Fr ,  F4, F z ) .  The components 
(in cylindrical coordinates) are not dependent on azimuthal position. Denote the 
solutions 2, ? to the adjoint equation for a ring of point forces through = (q ,  <) as 

G(x) = M(x1c;F).2 and ?(x) = N ( x I < ; Y ) + ,  (A 7) 



Particle motion in rotating viscous flow 25 1 

where 2 is a constant vector in cylindrical coordinates and f = 2 b(r-q)S(z-C)/(2nq) 
is the forcing in the adjoint equation (A2). The terms Ei and ?, hence M(x1g;S) . 2 
and N ( x 1 t ; S )  . 2, also do not depend on azimuthal angle 4. 

If we take f = 0 and the surface element in (A4) to be dS = 2nrds with 
ds2 = dr2 + dz2, the boundary integral expression, which incorporates axial symmetry, 
is 

g E s : +(<) } = -l 2nr[ F . M ( x l < ; S ) - u n : N ( x 1 < ; 9 ) ]  ds,. (AS) 
< E I' : u( t )  

g e v :  0 

Reciprocity of the Green's function: Consider the point force responses to equation 
(A 1) and (A2) with f = e8(x - <) and 1 = 26(x - 2). Equation (A 3) is written 

The fundamental solution of (A2) is Ei(x) = G(xl2;5).2. By comparing equations 
(A 1) and (A2), we may write u(x)  = G(xI<;-F).e. Integrating (A9) over the fluid 
volume and using the divergence theorem yields 

e.G(<12,5).2 = 2.G(tl<;-Y).e. (A 10) 

Therefore, we may conclude that 

G'(tl2; 9) = G(?lC; -Y), (A 11) 

which establishes a reciprocity relation for this Green's function. 

Appendix B. Disturbance Green's function 
The diagonal terms of the Green's function M have a logarithmic singularity as 

( r ,  z )  + (q ,  0, creating numerical problems when the integrals defining the Green's 
function are evaluated near the singular point. By subtracting the singular Stokeslet 
(F = 0) contribution, the integral expression which remains, Md = M - MStokes, is 
then convergent everywhere. 

In this appendix we first show how to recover the common form of the axisymmetric 
Stokeslet (e.g. Pozrikidis 1992) containing elliptic integrals. We then form the non- 
singular disturbance Green's function Md by removing the singular Stokeslet. 

B.l. Axisymmetric Stokeslet 
The known axisymmetric Stokeslet solution follows from equation (3.24) in two steps. 
First contour integration of the axial wavenumber n yields 

1 "  
47c 

Mi$'kes = - 1 e-klz-ii Jl(rk)Jl(qk) dk, 

m 

M:Fkes = --& 1 (z - c) k e-kiz-cl Jo(rk)Jl(qk) dk, 
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(1 + k / z  - [l)e-klz-cl Jo(rk)fo(yk) dk. (B le) 

These expressions can be simplified using known identities (Gradshteyn 1965, eq. 
6.612-3; Abramowitz & Stegun 1970, eq. 8.13; Eason, Noble & Sneddon 1955 note 
the factor of 7 ~ / 2  in the definition of the elliptic integrals) to arrive at the familiar 
form involving elliptic integrals : 

MSrkes = __ 
;7c Jom 

( r2  - q2)* + 3(r2 + q2)(z  - i)2 + 2(z - i~~ 
A2 

(r2+y2+2(z -- 02) K(k)- 

z - i  
MzS:okes = 8n2qB 

q2 - r2 - (z - i)2 
A2 

-~ [ K ( k ) +  

MfYkes = __ 1 k ( k )  + - - 7 e ( k ) ]  (z -02 , 47c2 B A 

where K(k) and E(k) are elliptic integrals of the first and second kind, respectively, 
and 

A2 = ( r  - q)2  + (z - 02, B2 = ( r  + q)2  + ( z  - 1)2 ,  k2 = 4ry/B2. 

The reciprocity relation (i.e. interchanging source and receiver) is simply the transpose 
of the matrix MStokes. and M::okes, have 
a logarithmic singularity for (r,z) + ( q , ( ) ,  while the off-diagonal terms are not 
singular. 

B.2. Disturbance Green's function 
The disturbance Green's function is specified by subtracting the Stokeslet Md = 

Terms on the diagonal, M F k e s ,  

to produce M - MStokes 



k l z  - " e-klz-ii Jo(kr)Jo(kq) dk, 1 - 
4 

where the functions A l ,  A2, c, N are defined in Q 3.2. 

Appendix C. Asymptotic expression for M 

(B 3i) 

In this appendix we derive the far-field asymptotic form of t,,e Green's function 
valid for F-'/21z - (' 9 1. It is first necessary to rescale the Green's function given in 
(3.22) by using the identity M(r,zly, [; F) = F1/2M(F1/2r ,  F1 /*z IF1 /*q ,  F = 

1) to remove the explicit Taylor number dependence from the denominator. Then the 
Taylor number only appears as a multiplicative factor involving the positions r, q or 
Iz - ( 1 .  If we define x = F'/*lz - 4 / 2  + 1, the rescaled Green's function is 

9-w 
2x 

M,, = - im -2k [ -2eF2 .  + 2Re -e iN2x}] Jl(kF1/2r)J1(kF1/2q) dk, (C l b )  { 
M,, = - F1/2 im sgn(z - <)k2 

271. 

M,, = - lm 2k [-2e-c2x + 2Re Jl(kF1/2r)Jl(kF1/2q) dk, (C Id) 
27t 

9 F L M  2 7 5  



254 J. P. Tunzosh and H .  A.  Stone 

x J0(kF1/2r)J1 (kF1l2q) dk, 

x J0(kY1/2r)Jo( k9-’/’q) dk, (C li)  

where c, N ,  A l ,  A2 are the roots given in equations (3.19), (3.20) and (3.23) with F = 1. 

In the limit x+ 1, the two terms in the integrand of the Green’s function can be 
estimated using Laplace’s method. The major contribution to the integral comes from 
a small region around k = 0, with the remainder contributing exponentially small 
terms. The Taylor series expansion of the integrand in the neighbourhood of k = 0 
makes use of c w k 3 / 2  - 3/16 k7 and N m (1 + i) + 3/8(-1+ i) k2. We define 
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a2 1 

Mz6 - &(z - ()-‘I s2 e-”J0(as)Jl(/3s) ds, 
0 
a2 1 

M,, - -1z -[I-’ s2 e-S3Jo(as)Jo(/3s) ds. 
4n 0 

(C 2i) 

The far-field response of a point force located on the origin corresponds to setting 
( r ,  z )  = 0, hence a = 0. In the limit p Q 1 and x + 1, the velocity fields become 

which are valid in the far-field of a conical region around the z-axis. 
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